Mechanics 1 Momentum Questions

1 A particle A moves across a smooth horizontal surface in a straight line. The particle A has mass 2 kg and speed 6 m s^{-1} . A particle B, which has mass 3 kg, is at rest on the surface. The particle A collides with the particle B.

- (a) If, after the collision, A is at rest and B moves away from A, find the speed of B.

 (3 marks)
- (b) If, after the collision, A and B move away from each other with speeds $v \, \text{m s}^{-1}$ and $4v \, \text{m s}^{-1}$ respectively, as shown in the diagram below, find the value of v.

8 Two particles, A and B, are moving on a smooth horizontal surface.

The particle A has mass $m \, \text{kg}$ and is moving with velocity $\begin{bmatrix} 5 \\ -3 \end{bmatrix} \, \text{m s}^{-1}$.

The particle *B* has mass $0.2 \,\mathrm{kg}$ and is moving with velocity $\begin{bmatrix} 2 \\ 3 \end{bmatrix} \,\mathrm{m \, s}^{-1}$.

- (a) Find, in terms of m, an expression for the total momentum of the particles. (2 marks)
- (b) The particles A and B collide and form a single particle C, which moves with velocity $\begin{bmatrix} k \\ 1 \end{bmatrix} \text{m s}^{-1}$, where k is a constant.
 - (i) Show that m = 0.1. (3 marks)
 - (ii) Find the value of k. (3 marks)

1 Two particles A and B have masses of 3 kg and 2 kg respectively. They are moving along a straight horizontal line towards each other. Each particle is moving with a speed of $4 \,\mathrm{m\,s^{-1}}$ when they collide.

- (a) If the particles coalesce during the collision to form a single particle, find the speed of the combined particle after the collision. (3 marks)
- (b) If, after the collision, A moves in the same direction as before the collision with speed $0.4 \,\mathrm{m\,s^{-1}}$, find the speed of B after the collision. (3 marks)
- 2 Two particles, A and B, are moving on a smooth horizontal surface. Particle A has mass $2 \log A$ and velocity $\begin{bmatrix} 3 \\ -2 \end{bmatrix} \text{m s}^{-1}$. Particle B has mass $3 \log A$ and velocity $\begin{bmatrix} -4 \\ 1 \end{bmatrix} \text{m s}^{-1}$. The two particles collide, and they coalesce during the collision.
 - (a) Find the velocity of the combined particles after the collision. (3 marks)
 - (b) Find the speed of the combined particles after the collision. (2 marks)

Mechanics 1 Momentum Answers

1(a)	1			
	$ \begin{array}{ccc} $			
	$2 \times 6 = 3 \times v$ $v = 4 \mathrm{ms}^{-1}$	M1 A1 A1	3	
(b)	\rightarrow 6ms ⁻¹	AI	3	
	$ \begin{array}{ccc} 2 \text{ kg} & \bigcirc & \bigcirc & 3 \text{ kg} \\ & \leftarrow v & \rightarrow 4v \end{array} $			
	$2 \times 6 = -2 \times v + 3 \times 4v$ $12 = 10v$	M1 A1		all terms
	$v = 1.2 \mathrm{ms}^{-1}$	A1√	3	$\sqrt{\text{sign error }}(v=0.857)$
	Total		6	

8(a)	$m(5\mathbf{i} - 3\mathbf{j}) + 0.2(2\mathbf{i} + 3\mathbf{j})$	M1		Momentum terms added
		A1	2	All correct
(b)(i)	$(0.2+m)(k\mathbf{i}+\mathbf{j})$	В1		Seen or used to find m
	use of conservation of momentum	M1		Used with candidate's expressions in 2D equation or used to give one of the 1D equations below
	-3m + 0.6 = 0.2 + m			
	m = 0.1	A1	3	Full verification accepted, CAO
(ii)	5m + 0.4 = 0.2k + mk	A1		
	substitute m	m1		
	k = 3	A1	3	
	Total		8	

1(a)	$3 \times 4 + 2 \times (-4) = 5v$ $4 = 5v$	M1 A1		Three term equation for conservation of momentum. Correct equation
	$v = \frac{4}{5} = 0.8$	A1	3	Correct speed (for use of mg instead of m deduct the first A1)
(b)	$3 \times 4 + 2 \times (-4) = 3 \times 0.4 + 2v$ 4 = 1.2 + 2v	M1 A1		Four term equation for conservation of momentum. Correct equation
	$v = \frac{4 - 1.2}{2} = 1.4$	A1	3	Correct speed (for use of mg instead of m deduct the first A1)
			6	

2(-)	$2\begin{bmatrix} 3 \\ -2 \end{bmatrix} + 3\begin{bmatrix} -4 \\ 1 \end{bmatrix} = 5\mathbf{v}$	M1		Three term vector equation, with a '+'
2(a)		A1		sign, for conservation of momentum Correct equation
	$\mathbf{v} = \frac{1}{5} \begin{bmatrix} -6 \\ -1 \end{bmatrix} = \begin{bmatrix} -1.2 \\ -0.2 \end{bmatrix}$	A1	2	Deduct this first A mark for use of mg Correct velocity
	5[-1] [-0.2]	AI	3	Confect velocity
(b)	$v = \sqrt{1.2^2 + 0.2^2} = 1.22 \text{ ms}^{-1}$	M1		Finding speed from their velocity in part (a) (Must include addition of two terms)
		A1F	2	Correct speed from their velocity Accept 1.21
	Total		5	